To prepare the product #x (log(x + 1) - log(x - 1))# for solution by l'Hôpital's rule (where #log# here is base #e#), rewrite it as:
#lim_(x->∞) (log(x + 1) - log(x - 1))/(1/x)#
Applying l'Hôpital's rule, we get that
#lim_(x->∞) ( d/( dx)(log(x + 1) - log(x - 1)))/( d/( dx)(1/x))#
#=lim_(x->∞) (1/(x + 1) - 1/(x - 1))/(-1/x^2)#
Multiplying the numerator and denominator by #(x+1)(x-1)x^2#
#= lim_(x->∞) (2 x^2)/((x - 1) (x + 1))#
#=2 lim_(x->∞) x^2/((x - 1) (x + 1))#
Let #u = x^2#. Then #lim_(x->∞) x^2/((x - 1) (x + 1)) = lim_(u->∞) u/(u - 1)#.
So, since #(x-1)(x+1)=(x^2-1)#, we have that
#= 2 lim_(u->∞) u/(u - 1)#
Divide the numerator and denominator by #u# gives:
#=2 lim_(u->∞) 1/(1 - 1/u)#
The expression #-1/u -> 0# as #u->∞#:
#2 lim_(u->∞) 1/(1 - 1/u)=2(1)=2#