How do you multiply 36x ^ { 4} y ^ { 10} \cdot - 3x ^ { 2} y ^ { 2}36x4y103x2y2?

1 Answer
May 31, 2017

36x ^ { 4} y ^ { 10} \cdot - 3x ^ { 2} y ^ { 2}=-108x^{6}y^{12}36x4y103x2y2=108x6y12
You multiply each thing with the same thing... Let me explain...

Explanation:

Because there is only multiplications:
36x ^ { 4} y ^ { 10} \cdot - 3x ^ { 2} y ^ { 2}= 36*x ^ { 4} *y ^ { 10} \cdot - 3*x ^ { 2}* y ^ { 2}36x4y103x2y2=36x4y103x2y2

You can rewrite how ever you want the equation. For this case you want to do this:
36*x ^ { 4} *y ^ { 10} \cdot - 3*x ^ { 2}* y ^ { 2} = (36*-3)(x^{4}*x^{2})(y^{10}*y^{2})36x4y103x2y2=(363)(x4x2)(y10y2)

Now you can multiply each parenthesis:
(36*-3)(x^{4}*x^{2})(y^{10}*y^{2})= -108x^{6}y^{12}(363)(x4x2)(y10y2)=108x6y12

Done!