Question #3960a

1 Answer
May 29, 2017

interval (pi/4, (3pi)/4)(π4,3π4)

Explanation:

Solve this trig inequality by the sign chart.
First solve sin x.cos 2x = 0
Either factor should be zero.
Consider the function F(x) = f(x).g(x) = (sin x)(cos 2x)
The common period of F(x ) is piπ
a. sin x = 0--> x = 0 and x = pix=π.
For (0, pi)(0,π), the function f(x) = sin x > 0
b. cos 2x = 0 --> 2x = pi/22x=π2 and 2x = 3pi/22x=3π2 -->
x = pi/4x=π4 and x = (3pi)/4x=3π4
Inside interval (pi/4, 3pi/4)(π4,3π4), the function g(x) = cos 2x < 0

Variation of f(x)
0 + + + + + + pi/4π4+ + + ++ +pi/2π2+ + + + + +(3pi)/43π4+ + ++ + + piπ

Variation of g(x)
0+++++++++pi/4π4 - - - - - - - - pi/2π2 - - - - - - - (3pi)/43π4++++++++piπ

The resultant F(x) = f(x).g(x) < 0 when x inside interval (pi/4, (3pi)/4)(π4,3π4)