Find the integral intsec(x)/(sec(x)+tan(x))dxsec(x)sec(x)+tan(x)dx?

3 Answers
May 27, 2017

tanx-secx+C.tanxsecx+C.

Explanation:

I=intsecx/(secx+tanx)dx,I=secxsecx+tanxdx,

=intsecx/(secx+tanx)xx(secx-tanx)/(secx-tanx)dx,=secxsecx+tanx×secxtanxsecxtanxdx,

=int(sec^2x-secxtanx)/(sec^2x-tan^2x)dx,=sec2xsecxtanxsec2xtan2xdx,

=intsec^2xdx-intsecxtanxdx,...[because, sec^2x-tan^2x=1],

:. I=tanx-secx+C.

intsecx/(secx+tanx)dx=-1/(secx+tanx)+C

Explanation:

intsecx/(secx+tanx)dx

Let u=secx+tanx, then

du=(secxtanx+sec^2x)dx=secx(secx+tanx)dx

intsecx/(secx+tanx)dx

= intsecx/uxx(du)/(secx(secx+tanx)

= int1/u^2du

= -1/u +C

= -1/(secx+tanx)+C

May 27, 2017

Given: intsec(x)/(sec(x)+tan(x))dx

Multiply by 1 in the form of (sec(x)-tan(x))/(sec(x)-tan(x))

intsec(x)/(sec(x)+tan(x))(sec(x)-tan(x))/(sec(x)-tan(x))dx

The denominator the difference of two squares:

int(sec(x)(sec(x)-tan(x)))/(sec^2(x)-tan^2(x))dx

From the identity 1 + tan^2(x)=sec^2(x), we see that the denominator becomes 1:

intsec(x)(sec(x)-tan(x))dx

Distributing the secant function gives us two integrals:

intsec^2(x)dx-intsec(x)tan(x)dx

The first integral becomes the tangent function:

tan(x)-intsec(x)tan(x)dx

Use the identities tan(x) = sin(x)/cos(x) and sec(x) = 1/cos(x) on the second integral:

tan(x)-intsin(x)/cos^2(x)dx

let u = cos(x), then du = -sin(x)dx

tan(x)+intu^-2du

tan(x)-u^-1+C

intsec(x)/(sec(x)+tan(x))dx= tan(x) -sec(x)+ C