Given: intsec(x)/(sec(x)+tan(x))dx
Multiply by 1 in the form of (sec(x)-tan(x))/(sec(x)-tan(x))
intsec(x)/(sec(x)+tan(x))(sec(x)-tan(x))/(sec(x)-tan(x))dx
The denominator the difference of two squares:
int(sec(x)(sec(x)-tan(x)))/(sec^2(x)-tan^2(x))dx
From the identity 1 + tan^2(x)=sec^2(x), we see that the denominator becomes 1:
intsec(x)(sec(x)-tan(x))dx
Distributing the secant function gives us two integrals:
intsec^2(x)dx-intsec(x)tan(x)dx
The first integral becomes the tangent function:
tan(x)-intsec(x)tan(x)dx
Use the identities tan(x) = sin(x)/cos(x) and sec(x) = 1/cos(x) on the second integral:
tan(x)-intsin(x)/cos^2(x)dx
let u = cos(x), then du = -sin(x)dx
tan(x)+intu^-2du
tan(x)-u^-1+C
intsec(x)/(sec(x)+tan(x))dx= tan(x) -sec(x)+ C