Question #3a93e

2 Answers
May 7, 2017

Use Pythagorean identity and definition of tangent

Explanation:

tan2(x)+1=1cos2(x)

Remember, tan(x)=sin(x)cos(x) (this is just the definition of tan(x))

tan2(x)+1

=(tan(x))2+1

=(sin(x)cos(x))2+1

=sin2(x)cos2(x)+1

Common denominator

=sin2(x)cos2(x)+cos2(x)cos2(x)

=sin2(x)+cos2(x)cos2(x)

Now we use the Pythagorean identity (1=cos2(x)+sin2(x), I won't prove this here, but if you want, check this out) to solve the rest

sin2(x)+cos2(x)cos2(x)=1cos2(x)

There it is,

tan2(x)+1=1cos2(x)

May 7, 2017

We know by definition
cosθ=xr
tanθ=yx
enter image source here
Now,
1+tan2θ=1+y2x2
=x2+y2x2
=r2xx
=1cos2θ