Solve:
#(x+5)(x-3)=-2(2x+7)#
Expand.
#(x+5)(x-3)=-4x-14#
FOIL.
#x^2+2x-15=-4x-14#
Add #4x# to both sides.
#x^2+6x-15=-14#
Add #14# to both sides.
#x^2+6x-1#
#x^2+6x-1# is a quadratic equation in standard form: #ax^2+bx+c#, where #a=1#, #b=6#, #c=-1#.
Use the quadratic formula to solve.
#x=(-b+-sqrt(b^2-4ac))/(2a)#
Substitute the given values into the formula.
#x=(-6+-sqrt(6^2-4xx1xx-1))/(2xx1)#
Simplify.
#x=(-6+-sqrt(36+4))/2#
#x=(-6+-sqrt(40))/2#
Prime decompose #sqrt(40)#.
#x=(-6+-sqrt(2xx2xx2xx5))/2#
#x=(-6+-sqrt(2^2xx2xx5))/2#
#x=(-6+-2sqrt10)/2#
Simplify.
#x=-3+-2sqrt10#
Solutions for #x#.
#x=color(red)(-3+2sqrt10),color(blue)(-3-2sqrt10#