Question #13537

1 Answer
May 3, 2017

a) #g(5x+2) = 75x^2+35x+4#
b) #f(x) - h(5) = 2x-125#
c) #f(x)[h(x)-g(x)] = 2x^4-11x^3+23x^2-24x+10#

Explanation:

Given:

#f(x) = 2x-5#
#g(x) = 3x^2-5x+2#
#h(x) = x^3-x#

a) In order to find #g(5x+2)# we must plug in for every value of #x# in #g(x)# the value #(5x+2)#.

#g(x) = 3x^2-5x+2#
#g(5x+2) = 3(5x+2)^2-5(5x+2)+2#

Now we simplify the expression on the right hand side.

#= 3(5x+2)(5x+2)-5(5x+2)+2#

We FOIL #(color(red)(5x)color(blue)(+2))(color(green)(5x)color(purple)(+2))# and distribute #(-5)# to #(5x+2)#

#= 3[(color(red)(5x))(color(green)(5x))+(color(red)(5x))(color(purple)(+2))+(color(blue)(2))(color(green)(5x))+(color(blue)(+2))(color(purple)(+2))]-25x-10+2#

#= 3[25x^2+10x+10x)+4]-25x-8#

#= 75x^2+60x+12-25x-8#

#g(5x+2) = 75x^2+35x+4#

b) For this part, we again substitute the given value of #5# into #h(x)#

#f(x) = 2x-5#
#h(x) = x^3-x#

#f(x) - h(5) = 2x-5 - [(5)^3-(5)]#

#= 2x-5 - 125 + 5#

#f(x) - h(5) = 2x-125#

c) For this part, we need only to perform arithmetic on the given functions:

#f(x) = 2x-5#
#g(x) = 3x^2-5x+2#
#h(x) = x^3-x#

#f(x)[h(x)-g(x)] = (2x-5)[x^3-x-(3x^2-5x+2)]#

Simplifying the expression in the brackets, we get
#= (2x-5)[x^3-x-3x^2+5x-2]#
#= (2x-5)[x^3-3x^2+4x-2]#

Now we need to expand and multiply #(2x-5)# by #[x^3-3x^2+4x-2]#

#=(color(red)(2x)color(blue)(-5))[x^3-3x^2+4x-2]#

We can distribute the terms in #(2x-5)# and multiply each of them by #[x^3-3x^2+4x-2]#

#=(color(red)(2x))[x^3-3x^2+4x-2]+(color(blue)(-5))[x^3-3x^2+4x-2]#

This gives:

=#color(red)(2x^4-6x^3+8x^2-4x)#
#color(blue)(-5x^3+15x^2-20x+10)#

Combining like terms, gives:

#=color(red)(2)x^4 + (color(red)(-6)color(blue)(-5))x^3 + (color(red)(8)color(blue)(+15))x^2 + (color(red)(-4)color(blue)(-20))x+color(blue)(10) #

#f(x)[h(x)-g(x)] = 2x^4-11x^3+23x^2-24x+10#