How do you differentiate f(x)=(5e^x+cosx)(x-2)f(x)=(5ex+cosx)(x2) using the product rule?

1 Answer
Feb 10, 2017

=5xe^x-5e^x-xsinx+2sinx+cosx=5xex5exxsinx+2sinx+cosx

Explanation:

If f(x)=g(x)*h(x)f(x)=g(x)h(x), you know that

f'(x)=g'(x)*h(x)+g(x)*h'(x) (product rule), then

f'(x)=(5e^x-sinx)(x-2)+(5e^x+cosx)*1

=5xe^x-xsinx-10e^x+2sinx+5e^x+cosx

=5xe^x-5e^x-xsinx+2sinx+cosx