How do you use implicit differentiation to find (dy)/(dx)dydx given 5x^3+xy^2=5x^3y^35x3+xy2=5x3y3?

1 Answer
Jan 22, 2017
  1. Differentiate each term
    d(5x^3)+d(xy^2)=d(5x^3y^3)d(5x3)+d(xy2)=d(5x3y3)

  2. Pull constants out of each differential
    5d(x^3)+d(xy^2)=5d(x^3y^3)5d(x3)+d(xy2)=5d(x3y3)

  3. Differentiate
    5(color(red)(3x^2dx))+[color(blue)(x(2y)dy+y^2dx)]=5[color(purple)(x^3(3y^2)dy+y^3(3x^2)dx)]5(3x2dx)+[x(2y)dy+y2dx]=5[x3(3y2)dy+y3(3x2)dx]

  4. Simplify
    (15x^2)dx+(2xy)dy+(y^2)dx=(15x^3y^2)dy+(15x^2y^3)dx(15x2)dx+(2xy)dy+(y2)dx=(15x3y2)dy+(15x2y3)dx

  5. Separate dydy and dxdx terms
    (2xy)dy-(15x^3y^2)dy=(15x^2y^3)dx-(15x^2)dx-(y^2)dx(2xy)dy(15x3y2)dy=(15x2y3)dx(15x2)dx(y2)dx

  6. Simplify terms
    (-15x^3y^2+2xy)dy=(15x^2y^3-15x^2-y^2)dx(15x3y2+2xy)dy=(15x2y315x2y2)dx

  7. Solve for dy/dxdydx
    dy/dx=(15x^2y^3-15x^2-y^2)/(-15x^3y^2+2xy)dydx=15x2y315x2y215x3y2+2xy