How do you find the power (-2+2i)^3 and express the result in rectangular form?

1 Answer
Dec 30, 2016

= 16 ( 1 + i)

Explanation:

We use polar complex first t o simplify down

let R e^(i theta) = -2 + 2i

= 2 sqrt 2 (-1/sqrt 2 + i /sqrt 2)

= 2 sqrt 2 (-1/sqrt 2 + i /sqrt 2)

We will find -ve value for cos theta and +ve value for sin theta in Q2 of the Argand diagram.

implies theta = (3 pi) /4

implies R e^(i theta) = 2 sqrt 2 e^(i (3 pi) /4)

implies (R e^(i theta))^3 = (2 sqrt 2)^3 e^(i (3*3 pi) /4)

= 16 sqrt 2e^(i (pi) /4)

= 16 ( 1 + i)

clearly you could also use a binomial expansion :)