Step 1) Combine the terms in parenthesis:
(color(red)(b^8)color(blue)(c^6)color(green)(d^5))(8color(red)(b^6)color(blue)(c^2)color(green)(d)) -> color(red)(b^8)color(blue)(c^6)color(green)(d^5)8color(red)(b^6)color(blue)(c^2)color(green)(d)(b8c6d5)(8b6c2d)→b8c6d58b6c2d
Now we can group like terms:
color(red)(b^8)color(blue)(c^6)color(green)(d^5)8color(red)(b^6)color(blue)(c^2)color(green)(d) -> 8color(red)(b^8)color(red)(b^6)color(blue)(c^6)color(blue)(c^2)color(green)(d^5)color(green)(d)b8c6d58b6c2d→8b8b6c6c2d5d
For the next step in the simplification we need to use the following rule for exponents:
color(purple)(x^ax^b = x^(a+b))xaxb=xa+b
Using this rule we can now combine like terms:
8color(red)(b^8)color(red)(b^6)color(blue)(c^6)color(blue)(c^2)color(green)(d^5)color(green)(d) -> 8color(red)(b^(8+6))color(blue)(c^(6+2))color(green)(d^(5+1)) -> 8color(red)(b^14)color(blue)(c^8)color(green)(d^6)8b8b6c6c2d5d→8b8+6c6+2d5+1→8b14c8d6