First we calculate the determinant of matrix A
#detA= | (6,7,8), (1,0,1), (0,1,0) | #
#=6(0-1)-7(0)+8(1)=2#
As #detA!=0#, the matrix is invertible
Then, we calculate the matrix of minor cofactors
#A^c= ( (((0,1),(1,0)),-((1,1),(0,0)),((1,0),(0,1))), (-((7,8),(1,0)),((6,8),(0,0)),-((6,7),(0,1))), (((7,8),(0,1)),-((6,8),(1,1)),((6,7),(1,0))) ) #
#= ( (-1,0,1), (8,0,-6), (7,2,-7) )#
Then we calculate the transpose of #A^c#
#barA^c=((-1,8,7),(0,0,2),(1,-6,-7))#
Then, the inverse is
#A^(-1)=barA^c/detA#
#=1/2((-1,8,7),(0,0,2),(1,-6,-7))#
#=((-1/2,4,7/2),(0,0,1),(1/2,-3,-7/2))#
Verification, by doing #A A^(-1)#
#=((6,7,8), (1,0,1), (0,1,0) )*((-1/2,4,7/2),(0,0,1),(1/2,-3,-7/2)) #
#=((1,00),(0,10),(0,0,1))#
#=I#