How do you find #\sum _ { n = 1} ^ { \infty } \frac { 15^ { n } } { ( n + 1) 6^ { 2n + 1} }#?
2 Answers
Explanation:
We will make use of the taylor series
with that:
#=1/6sum_(n=1)^oo1/(n+1)(15/36)^n#
#=1/6sum_(n=2)^oo(1/n)(5/12)^(n-1)#
#=1/6sum_(n=2)^oo(1/n)(5/12)^n(5/12)^(-1)#
#=12/5*1/6[-5/12+sum_(n=1)^oo(1/n)(5/12)^n]#
#=-1/6+2/5sum_(n=1)^oo(1/n)(5/12)^n#
#=-1/6-2/5[-sum_(n=1)^oo(1/n)(5/12)^n]#
#=-1/6-2/5ln(1-5/12)#
#=2/5ln(12/7)-1/6#
#~~0.0489#
Explanation:
with
Now
and finally