Question #8c45d

1 Answer

int_0^1 2 cos ((pit)/2) dt=4/pi102cos(πt2)dt=4π

Explanation:

Provide the preparation pi/2π2 inside the integral and 2/pi2π outside the integral.

int_0^1 2 cos ((pit)/2) dt=(2/pi)*2*int_0^1 cos ((pit)/2*(pi/2)dt102cos(πt2)dt=(2π)210cos(πt2(π2)dt

int_0^1 2 cos ((pit)/2) dt=(4/pi)[sin ((pit)/2)]_0^1102cos(πt2)dt=(4π)[sin(πt2)]10

int_0^1 2 cos ((pit)/2) dt=4/pi[sin ((pi/2)(1))-sin ((pi/2)(0))]102cos(πt2)dt=4π[sin((π2)(1))sin((π2)(0))]

int_0^1 2 cos ((pit)/2) dt=4/pi102cos(πt2)dt=4π

God bless....I hope the explanation is useful.