The standard form is #color(blue)a+color(red)bi#
#(a+bi)/(c+di)#
Multiply the numerator and the denominator by the conjugate of the denominator
#((a+bi)/(c+di))*((c-di)/(c-di))#
#=((a+bi)(c-di))/((c+di)(c-di))#
#=(ac-adi+cbi-bdi^2)/(c^2cancel(-cdi)cancel(+cdi)-d^2i^2)#
Add like terms
#=(ac+(cb-ad)i-bdi^2)/(c^2-d^2i^2)#
#i^2=-1#
#=(ac+(cb-ad)i-bd(-1))/(c^2-d^2(-1))#
#=(ac+(cb-ad)i+bd)/(c^2+d^2)#
#=(ac+bd+(cb-ad)i)/(c^2+d^2)#
#=(ac+bd)/(c^2+d^2)+((cb-ad)i)/(c^2+d^2)#
#=color(blue)((ac+bd)/(c^2+d^2))+color(red)((cb-ad)/(c^2+d^2))i#