What is #x^3-2y^2-3x^3+z^4# if #x=3, y=5,# and #z=-3#?

2 Answers
Nov 19, 2016

#-23#

Explanation:

We can evaluate the given algebraic expression by simplifying
#" "#
the expression ,then substituting the values of #x, y and z.#
#" "#
#" "#
#x^3-2y^2-3x^3+z^4" "#Arranging similar monomials
#" "#
#=x^3-3x^3-2y^2+z^4#
#" "#
#=-2x^3-2y^2+z^4#
#" "#
#=-2(3)^3-2(5)^2+(-3)^4#
#" "#
#=-2xx27-2xx25+81#
#" "#
#=-54-50+81#
#" "#
#=-104+81#
#" "#
#=-23#

Nov 19, 2016

#-23#

Explanation:

To evaluate the expression, substitute the given values for x, y and z into it.

The expression can be simplified by collecting like terms.

#rArr-2x^3-2y^2+z^4#

#=-2xx(3)^3-2xx(5)^2+(-3)^4#

#=(-2xx27)-(2xx25)+81#

#=-54-50+81=-23#