What is the interval of convergence of sum (3x-2)^(n)/(1+n^(2)) ?

1 Answer
Nov 6, 2016

The interval of convergence is 1/3 <= x <=1

Explanation:

Let's do the ratio test

L=lim∣(3x-2)^(n+1)/(1+(n+1)^2)*(1+n^2)/(3x-2)^n∣
color(white)(aaaa)n->oo

=lim∣(3x-2)/(1+(n+1)^2)*(1+n^2)∣
color(white)(aaaa)n->oo

=(3x-2)lim∣(1+n^2)/(1+(n+1)^2)∣
color(white)(aaaaaaaaaa)n->oo

The series converge when ∣3x-2∣<1
So 3x-2<1=>3x<3 =>x<1
and -3x+2<1=>x>1/3

So the interval of convergence is 1/3 <= x <=1