Question #0f6bd

2 Answers
Oct 13, 2016

lim_(x->oo)e^((1+x^2)^(1/ln(x))) = e^(e^2)

Explanation:

In this problem, we will make repeated use of the fact that due to the continuity of e^x, we have lim_(x->oo)e^f(x) = e^(lim_(x->oo)f(x)). We will also use the properties of logarithms that

  • e^(ln(x)) = x
  • ln(a^x) = xln(a)

along with L'Hopital's rule, the chain rule, and the derivatives d/dxln(x) = 1/x and d/dxx^n = nx^(n-1)

Proceeding...

lim_(x->oo)e^((1+x^2)^(1/ln(x))) = e^[lim_(x->oo)(1+x^2)^(1/ln(x))]


lim_(x->oo)(1+x^2)^(1/ln(x)) = lim_(x->oo)e^ln((1+x^2)^(1/ln(x)))

=lim_(x->oo)e^(1/ln(x)ln(1+x^2))

=e^(lim_(x->oo)ln(1+x^2)/ln(x))


lim_(x->oo)ln(1+x^2)/ln(x) = lim_(x->oo)(d/dxln(1+x^2))/(d/dxln(x))

=lim_(x->oo)((2x)/(1+x^2))/(1/x)

=lim_(x->oo)(2x^2)/(x^2+1)

=lim_(x->oo)2/(1+1/x^2)

=2

=> lim_(x->oo)(1+x^2)^(1/ln(x)) = e^2

:.lim_(x->oo)e^((1+x^2)^(1/ln(x))) = e^(e^2)

Oct 14, 2016

lim_(x->oo)e^((1+x^2)^(1/lnx)) = e^(e^2)

Explanation:

First making y = x^2 we have

(1+x^2)^(1/lnx)equiv(1+y)^(2/lny)

calling now u=lny

(1+y)^(2/lny)equiv(1+e^u)^(2/u) = (e^(-u)+1)e^2

but x->oo implies in y->oo and
y->oo implies in u->oo so

lim_(x->oo)(1+x^2)^(1/lnx)equivlim_(u->oo) (e^(-u)+1)e^2=e^2

Finally

lim_(x->oo)e^((1+x^2)^(1/lnx)) = e^(e^2)