How do you differentiate f(x)=(2x+1)(4-x^2)(1+x^2) using the product rule?

1 Answer
Oct 12, 2016

10x^4+4x^3-18x^2-6x-8

You could further simply it if you are required to do so.

Explanation:

Multiply (1+x^2) by (4-x^2): (4+3x^2-x^4)

((2x+1)'(4+3x^2-x^4))+((2x+1)(4+3x^2-x^4)')

(2(4+3x^2-x^4))+((2x+1)(6x-4x^3))

(8+6x^2-2x^4)+(6x+12x^2-4x^3-8x^4)

8+6x^2-2x^4+6x+12x^2-4x^3-8x^4

8+6x+18x^2-4x^3-10x^4

Optional, divide by -1,

10x^4+4x^3-18x^2-6x-8

Good Luck