How do you differentiate f(x)= e^x((x^3)-1) f(x)=ex((x3)1) using the product rule?

1 Answer
Aug 28, 2016

e^x(x^3-1)+3x^2e^xex(x31)+3x2ex

Explanation:

frac{d}{dx}(e^x(x^3-1))ddx(ex(x31))

applying product rule, (fcdot g)^'=f^'cdot g+fcdot g^'
f=e^x,g=x^3-1

=frac{d}{dx}(e^x)(x^3-1)+frac{d}{dx}(x^3-1)e^x

we know,
frac{d}{dx}(e^x)=e^x
and,
frac{d}{dx}(x^3-1)=3x^2

finally,
simplifying it,
e^x(x^3-1)+3x^2e^x