How do you simplify the expression #cos(arcsin(x/5)) #?

1 Answer
Jul 18, 2016

#cos(arcsin(\frac{x}{5})) = \frac{sqrt{25-x^2}}{5}#.

Explanation:

Firstly, note that for the range of #arcsin(\frac{x}{5})#, the cosine function is purely positive.

Thus, I can say,

#cos(arcsin(\frac{x}{5})) = sqrt{1-sin^2(arcsin(\frac{x}{5}))}#, and also for the domain of x, #sin(arcsin(\frac{x}{5})) = \frac{x}{5}# since the arcsine function outputs values ranging from #-\frac{pi}{2}# to #\frac{pi}{2}#.

This can be verified graphically, the red one being #cos(arcsin(\frac{x}{5}))#, green #cos(\frac{x}{5})#, and blue #arcsin(\frac{x}{5})#: enter image source here

Therefore,

#cos(arcsin(\frac{x}{5})) = sqrt{1-\frac{x^2}{25})#

#= \frac{sqrt{25-x^2}}{5}#.