How do you evaluate #cot (690)#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer A. S. Adikesavan · Oscar L. Jul 2, 2016 #-sqrt 3# Explanation: #690=720-30=4(180)-30#.So, #690°# is in the 4th quadrant and, therefore, #cot# is negative. And so, #cot 690°=cot(4(180°)-30°)=-cot 30°=-sqrt 3#. Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 7737 views around the world You can reuse this answer Creative Commons License