What is the inverse of y=6^xy=6x?

3 Answers

x=log_6yx=log6y

Explanation:

Since

x=log_ba iff a=b^xx=logbaa=bx

you have:

y=6^x iff x=log_6yy=6xx=log6y

Jun 27, 2016

y= (ln x)/(ln 6)y=lnxln6

Explanation:

Replace x with y and y with x,

x= 6^yx=6y and solve for y now

ln x= yln 6

y= (ln x)/(ln 6)y=lnxln6

Jul 18, 2017

See below.

Explanation:

If g(x)g(x) is the inverse for f(x)f(x) then

g(f(x))=xg(f(x))=x then

g(6^x)=x rArrg(x) = log_ex/log_e 6 = f^-1(x)g(6x)=xg(x)=logexloge6=f1(x).