How do you differentiate g(x) = sqrt(x^2-1)cot(7-x)g(x)=x21cot(7x) using the product rule?

1 Answer
Jun 22, 2016

frac{d}{dx}(sqrt{x^2-1}cot (7-x))=frac{xcot (-x+7)}{\sqrt{x^2-1}}+frac{sqrt{x^2-1}}{sin ^2(-x+7)}ddx(x21cot(7x))=xcot(x+7)x21+x21sin2(x+7)

Explanation:

frac{d}{dx}(sqrt{x^2-1}cot (7-x))ddx(x21cot(7x))

Applying product rule, (fcdot g)^'=f^'cdot g+fcdot g^'

f=sqrt{x^2-1},g=cot (7-x)

=frac{d}{dx}(sqrt{x^2-1})cot (7-x)+frac{d}{dx}(cot (7-x))sqrt{x^2-1}

We know,
frac{d}{dx}(sqrt{x^2-1})=frac{x}{sqrt{x^2-1}}

frac{d}{dx}(cot (7-x))=frac{1}{sin ^2(7-x)}

[Applying chain rule frac{df(u)}{dx}=frac{df}{du}cdot frac{du}{dx}

let 7-x=u

=frac{d}{du}(cot (u))frac{d}{dx}(7-x)

we know,frac{d}{du}(cot (u))=-frac{1}{sin ^2(u)}
and,frac{d}{dx}(7-x)=-1

so,=frac{1}{sin ^2(7-x)}]

Finally,
=frac{x}{sqrt{x^2-1}}cot (7-x)+frac{1}{sin ^2(7-x)}sqrt{x^2-1}

simplifying it,
=frac{xcot (-x+7)}{\sqrt{x^2-1}}+frac{sqrt{x^2-1}}{sin ^2(-x+7)}