What is the derivative of 2^(2x)22x?

1 Answer
Jun 5, 2016

=2^{2x+1}ln (2)=22x+1ln(2)

Explanation:

frac{d}{dx}(2^{2x})ddx(22x)
Applying exponent rule,a^b=e^{bln (a)}ab=ebln(a)

2^{2x}=e^{2xln (2)}22x=e2xln(2)
=frac{d}{dx}(e^{2x\ln (2)})=ddx(e2xln(2))

Applying chain rule,
frac{df(u)}{dx}=frac{df}{du}cdot frac{du}{dx}df(u)dx=dfdududx

Let, 2xln (2)=u2xln(2)=u
=frac{d}{du}(e^u)frac{d}{dx}(2xln (2))=ddu(eu)ddx(2xln(2))

We know,
frac{d}{du}(e^u)=e^uddu(eu)=eu
and,
frac{d}{dx}(2xln (2))=2ln (2)ddx(2xln(2))=2ln(2)

Also,
=e^u2ln (2)=eu2ln(2)

Substituting back,u=2xln (2)u=2xln(2)

Simplifying it,
=2^{2x+1}ln (2)=22x+1ln(2)