How do you differentiate g(z) = z^3sin^2(2z) using the product rule?

1 Answer
Jun 1, 2016

frac{d}{dz}(z^3sin ^2(2z))=3z^2sin ^2(2z)+4sin (2z)cos (2z)z^3

Explanation:

\frac{d}{dz}(z^3sin ^2(2z))

Applying product rule,
(fcdot g)^'=f^'cdot g+fcdot g^'

f=z^3 ; g=sin^2(2z)

=frac{d}{dz}(z^3)sin ^2(2z)+frac{d}{dz}(sin ^2(2z))z^3

We know,
frac{d}{dz}(z^3)=3z^2
also, frac{d}{dz}(sin ^2(2z))=4sin (2z)cos (2z)

So finally,we get,
3z^2sin ^2(2z)+4sin (2z)cos (2z)z^3