How do you differentiate g(x)=arctan(x21)?

1 Answer
May 28, 2016

xarctan(x21)(x42x2+2)

Explanation:

ddx(arctan(x21))

Applying chain rule,

df(u)dx=dfdududx

Let arctan(x21)=u

=ddu(u)ddx(arctan(x21))

We know,
ddu(u)=12u

and,
ddx(arctan(x21))=2xx42x2+2

So, =12u2xx42x2+2

Substituting :u=arctan(x21),we get

=12arctan(x21)2xx42x2+2

Simplifying it,
=xarctan(x21)(x42x2+2)