How do you differentiate g(x) =e^x*1/x^2g(x)=ex1x2 using the product rule?

1 Answer
May 26, 2016

\frac{e^x}{x^2}-\frac{2e^x}{x^3}exx22exx3

Explanation:

\frac{d}{dx}(e^x\frac{1}{x^2})ddx(ex1x2)

Applying product rule,(fcdot g)^'=f^'cdot g+fcdot g^'

f=e^x,g=\frac{1}{x^2}

=\frac{d}{dx}(e^x)\frac{1}{x^2}+\frac{d}{dx}(\frac{1}{x^2})e^x

We know,
\frac{d}{dx}(e^x)=e^x and

\frac{d}{dx}(\frac{1}{x^2})=-\frac{2}{x^3}

So,
=e^x\frac{1}{x^2}+(-\frac{2}{x^3})e^x

Finally, simplifying it,
=\frac{e^x}{x^2}-\frac{2e^x}{x^3}