How do you differentiate f(x)=(sinx+1)(x^2-3e^x)f(x)=(sinx+1)(x23ex) using the product rule?

1 Answer
May 23, 2016

\cos (x)(x^2-3e^x)+(2x-3e^x)(\sin (x)+1)cos(x)(x23ex)+(2x3ex)(sin(x)+1)

Explanation:

\frac{d}{dx}((\sin (x)+1)(x^2-3e^x))ddx((sin(x)+1)(x23ex))

Applying product rule,
(f\cdot g)^'=f^'\cdot g+f\cdot g^'

f=sinx +1 ,g=x^2 - 3e^x
=frac{d}{dx}(sin (x)+1)(x^2-3e^x)+frac{d}{dx}(x^2-3e^x)(sin (x)+1)

we know,
\frac{d}{dx}(sin (x)+1)=cos (x);
\frac{d}{dx}(\sin (x))=\cos(x);
\frac{d}{dx}(1)=0;
\frac{d}{dx}(x^2-3e^x)=2x-3e^x

Finally,
=\cos(x)(x^2-3e^x)+(2x-3e^x)(\sin (x)+1)