Question #b8f2a

2 Answers
Apr 19, 2016

If the charges are separated by a distance r = 10mr=10m, then each charge would need a magnitude q=2.33xx10^-3Cq=2.33×103C in order for the force between them to equal the weight of a 50 kg person.

Explanation:

We'll start with the 6-step solution below and then follow-up with a more detailed explanation.

1) Let F_W = F_CFW=FC

2) F_C = 1/(4*pi*epsilon_0)*(q_1*q_2)/(r^2)FC=14πε0q1q2r2

3) F_W=m*gFW=mg

4) So re-write F_W =F_CFW=FC as

F_W = m*g =1/(4*pi*epsilon_0)*(q_1*q_2)/(r^2) = F_C FW=mg=14πε0q1q2r2=FC

5) (q_1*q_2)= m*g*(4*pi*epsilon_0)*(r^2)(q1q2)=mg(4πε0)(r2)

6) Since q_1=q_2q1=q2, we can write q_1^2= m*g*(4*pi*epsilon_0)*(r^2)q21=mg(4πε0)(r2)

q_1^2=50kg*9.81m/s^2*(4*3.1415*8.854 * 10^-12F/m)*(10m)^2q21=50kg9.81ms2(43.14158.8541012Fm)(10m)2
q_1^2=sqrt(5.45xx10^-6C^2)q21=5.45×106C2
q_1=2.33xx10^-3Cq1=2.33×103C

...and we’re done!

1) The problem states that “the force between [the charges] equals the weight of a 50 kg person”. F_C = F_WFC=FW is a simple, way to express this mathematically, where F_CFC represents the force between the charges and F_WFW is the weight of the person.

2) F_CFC is the (electrostatic) force acting between two charges separated by a distance rr, where the magnitude of one of the charges is, q_1q1 and the magnitude of the other charge is q_2q2. epsilon_0ε0 is the electric permeability of free space.

3) F_W=m*gFW=mg tells us that the weight of the person [or any object for that matter] is the mass of the object, mm, times the acceleration of gravity [due to the earth’s gravitational pull].

4) Here we expressed 1) in more explicit form, using equations 2) and 3)

5) The problem asks “What should be the magnitude of the charges”, so we rearrange equation 4) to solve for the charges, q_1*q_2q1q2, by multiplying both sides by 4*pi*epsilon_0*r^24πε0r2.

6) The phrase “Two Equal charges” indicates that we can set q_2 = q_1q2=q1. In other words, the magnitude of each charge is the same. So q_1*q_2=q_1^2q1q2=q21. After that, it’s just a matter of substituting the values for the quantities ( m,g,pi,epsilon_0 and rm,g,π,ε0andr ), carrying out a little arithmetic and we’re done!

Apr 21, 2016

2.34xx10^-3C2.34×103C, rounded to two decimal places.

Explanation:

Force between two charges q_1 and q_2q1andq2 at a distance rr is given by Coulomb's Law

F_C=k_e|q_1q_2|/ r^2FC=ke|q1q2|r2,

where k_eke is Coulombs' Constant and =8.99xx10^9 N m^2 C^(−2)=8.99×109Nm2C2
Force F_gFg due to weight of a person=mg=mg, where mm is person's mass and gg acceleration due to gravity and has value of 9.81ms^-29.81ms2.

Since given charges are equal, let each be =q=q
Equating both forces and inserting given values we obtain
8.99xx10^9|q^2|/ 10^2=50xx9.818.99×109q2102=50×9.81, simplifying and solving for qq
|q|=sqrt((50xx9.81)/(8.99xx10^7))|q|=50×9.818.99×107
|q|=2.34xx10^-3C|q|=2.34×103C, rounded to two decimal places.