What is #-5/9+ 1 1/3#?
2 Answers
7/9
Explanation:
Basically, you find the LCM of the denominators. That of 3 and 9 being 9, you multiply the numerator of the fraction with the smaller denominator with whatever multiple of the denominator the LCM is.
Perhaps a simpler visualisation would be thus:
Explanation:
#color(darkorange)1# #color(teal)1/color(violet)3#
#=(color(violet)3color(darkorange)(xx1)color(white)(i)color(teal)(+1))/color(violet)3#
#=4/3#
#|ul(9color(white)(X)3)#
#color(darkorange)3|ul(9color(white)(X)3)#
#color(white)(Xx)color(teal)3color(white)(X)color(violet)1# L.C.M.
#=color(darkorange)3xxcolor(teal)3xxcolor(violet)1=9#
#-5/9+4/3#
#=-5/9+(4color(red)(xx3))/(3color(red)(xx3))#
#=-5/9+12/9#
#=(-5+12)/9#
#=color(green)(|bar(ul(color(white)(a/a)7/9color(white)(a/a)|)))#