The series sum_(n=1)^oo ((2x)^n ) / 8^n is already written in the wished form :
sum_(n=1)^oo ((2x)^n ) / 8^n = sum_(n=1)^oo (2/8)^n x^n = sum_(n=1)^oo a_n x^n, a_n = (2/8)^n.
Let's compute lim "sup"_(n->oo)root(n)(abs(a_n)) :
root(n)(abs(a_n)) = root(n)(abs((2/8)^n)) = root(n)((2/8)^n) = 2/8 AA n in NN.
Therefore, lim "sup"_(n->oo)root(n)(abs(a_n)) = lim_(n->oo)root(n)(abs(a_n)) = 2/8 => R = 1/(2/8) = 8/2.
Thus, sum_(n=1)^oo ((2x)^n ) / 8^n converges AA x in (-8/2, 8/2).
You should now check the endpoints of the interval.
sum_(n=1)^oo (2/8)^n (-8/2)^n = sum_(n=1)^oo (-1)^n is not defined.
sum_(n=1)^oo (2/8)^n (8/2)^n = sum_(n=1)^oo 1 diverges.
Thus, sum_(n=1)^oo ((2x)^n ) / 8^n converges AA x in (-8/2, 8/2).