What is the radius of convergence of sum_1^oo ((2x)^n ) / 8^n?

1 Answer
Mar 6, 2016

The radius of convergence R of a power series of the form sum_(n=0)^(oo) a_n x^n is given by R = 1/(lim "sup"_(n->oo)root(n)(abs(a_n))).

In your case, R = 8/2 and sum_(n=1)^oo ((2x)^n ) / 8^n converges AA x in (-8/2, 8/2).

Explanation:

The series sum_(n=1)^oo ((2x)^n ) / 8^n is already written in the wished form :

sum_(n=1)^oo ((2x)^n ) / 8^n = sum_(n=1)^oo (2/8)^n x^n = sum_(n=1)^oo a_n x^n, a_n = (2/8)^n.

Let's compute lim "sup"_(n->oo)root(n)(abs(a_n)) :

root(n)(abs(a_n)) = root(n)(abs((2/8)^n)) = root(n)((2/8)^n) = 2/8 AA n in NN.

Therefore, lim "sup"_(n->oo)root(n)(abs(a_n)) = lim_(n->oo)root(n)(abs(a_n)) = 2/8 => R = 1/(2/8) = 8/2.

Thus, sum_(n=1)^oo ((2x)^n ) / 8^n converges AA x in (-8/2, 8/2).

You should now check the endpoints of the interval.

  • If x = -8/2 :

sum_(n=1)^oo (2/8)^n (-8/2)^n = sum_(n=1)^oo (-1)^n is not defined.

  • If x = 8/2 :

sum_(n=1)^oo (2/8)^n (8/2)^n = sum_(n=1)^oo 1 diverges.

Thus, sum_(n=1)^oo ((2x)^n ) / 8^n converges AA x in (-8/2, 8/2).