How do you simplify i44 + i150 - i74 - i109 + i61i44+i150i74i109+i61?

1 Answer
Mar 1, 2016

1

Explanation:

We have,
i^1=ii1=i
i^2= -1i2=1
i^3 = i^2 xx i = -ii3=i2×i=i
i^4 = i^2 xx i^2 =(-1)^2 xx (-1)^2 = 1i4=i2×i2=(1)2×(1)2=1
i^5 = i^4 xx i = 1 xx i =ii5=i4×i=1×i=i
i^6 = i^4 * i^2 = 1 * -1 = -1i6=i4i2=11=1
i^7 = i^4 * i^3 = 1 * -i = -i i7=i4i3=1i=i
i^8 = i^4 * i^4 = 1 * 1 = 1i8=i4i4=11=1

Now,
i^44 = (i^4) ^11 = (1)^11 = 1i44=(i4)11=(1)11=1
i^150 = (i^4)^37 * i^2 = i^2 = -1i150=(i4)37i2=i2=1
i^74 = (i^4)^18 * i^2 = i^2 = -1i74=(i4)18i2=i2=1
i^109 = (i^4)^27 * i^1 = i i109=(i4)27i1=i
i^61 = (i^4)^15 * i^1 = i i61=(i4)15i1=i

Finally,
i^44 + i^150 - i^74 - i^109 + i^61i44+i150i74i109+i61
=(1) + (-1) - (-1) - (i) + (i)=(1)+(1)(1)(i)+(i)
=1 - 1 + 1 - i + i=11+1i+i
= 1 =1