First , we have to write sum_(n=0)^oo ( (x-2) ^n ) / ( n^2 + 1 ) in the form of sum_(n=0)^(oo) a_n x^n. So we will do a change of variable y = x-2 iff x = 2 + y.
sum_(n=0)^oo ( (x-2) ^n ) / ( n^2 + 1 ) = sum_(n=0)^oo ( y^n ) / ( n^2 + 1 ).
Therefore, a_n = 1 / ( n^2 + 1 ) = |a_n|.
Now, let's compute R :
lim "sup"_(n->oo)root(n)(abs(a_n)) = lim "sup"_(n->oo)1/root(n)( n^2 + 1 ).
"Yet, " root(n)( n^2 + 1 ) = exp(ln(root(n)( n^2 + 1 ))) = exp(1/nln( n^2 + 1 ))) = e^(ln( n^2 + 1 )/n).
"And " lim_(n->oo)ln( n^2 + 1 )/n = lim_(n->oo) (1/(n^2 + 1) * 2n) / 1 = lim_(n->oo) (2n)/(n^2 + 1) = lim_(n->oo) 2/(2n) = 0 " by Bernouilli l'Hôpital's rule".
"Thus, " lim_(n->oo) root(n)( n^2 + 1 ) = lim_(n->oo) e^(ln( n^2 + 1 )/n) = e^0 = 1.
=> R = lim "sup"_(n->oo)1/root(n)( n^2 + 1 )
= lim_(n->oo)1/root(n)( n^2 + 1 ) = 1/1 = 1.
Therefore, sum_(n=0)^oo ( y^n ) / ( n^2 + 1 ) converges AA y in ]-1, 1[
iff sum_(n=0)^oo ( (x-2) ^n ) / ( n^2 + 1 ) converges AA x in ]1, 3[.
Now, we should check the endpoints of the interval.
sum_(n=0)^oo ( 1 ^n ) / ( n^2 + 1 ) = sum_(n=0)^oo 1 / ( n^2 + 1 ) converges because n^2 + 1 >= n^2AA n > 0, n in NN iff 1/(n^2 + 1) <= 1/n^2 AA n > 0, n in NN by the comparison test.
sum_(n=0)^oo ( (-1) ^n ) / ( n^2 + 1 ) converges because it converges absolutely (see the case x = 3 above).
"Therefore, " sum_(n=0)^oo ( (x-2) ^n ) / ( n^2 + 1 ) converges AA x in [1, 3].