How do you differentiate f(x)=(x^2+1)(x^2-1) using the product rule?

1 Answer
Feb 27, 2016

d/dx(x^2+1)(x^2-1)=4x^3

Explanation:

d/dx(x^2+1)(x^2-1)

Applying product rule: (f\cdot g)^'=f^'\cdot g+f\cdot g^'

f=x^2+1,g=x^2-1

=\frac{d}{dx}(x^2+1)(x^2-1)+\frac{d}{dx}(x^2-1)(x^2+1) ...(i)

\frac{d}{dx}(x^2+1)=2x

(Applying sum/difference rule : (f\pm g)^'=f^'\pm g^'
=\frac{d}{dx}(x^2)+\frac{d}{dx}(1) =2x+0 =2x)

Also,
frac{d}{dx}(x^2-1) = 2x

So,finally we have from (i),

=2x(x^2-1)+2x(x^2+1)

Simplifying it,we get
4x^3