What is the interval of convergence of sum ((-1)^n * x^(n+8) ((1)nxn+8?

1 Answer
Feb 25, 2016

The radius of convergence RR of a power series sum_(n=0)^(oo) a_n x^nn=0anxn is given by R = 1/(lim "sup"_(n->oo)root(n)(abs(a_n))).

In that case, R = 1.

Explanation:

Let's write sum_(n=0)^(oo) (-1)^n * x^(n+8) in the form of sum_(n=0)^(oo) a_n x^n.

sum_(n=0)^(oo) (-1)^n * x^(n+8) = sum_(m=0)^(oo) a_m x^m,

where a_m = 0 if m<8 and a_m = (-1)^(m-8) if m>=8.

Now you can compute R = 1/(lim "sup"_(m->oo)root(m)(abs(a_m))).

Yet, abs(a_m) can only take 0 or 1 as a value. But when m tends to infinity (so when m is much larger than 8), abs(a_m) = 1 = root(m)(abs(a_m) so lim "sup"_(m->oo)root(m)(abs(a_m)) = 1.

Therefore, R = 1/1 = 1.

You now know that sum_(n=0)^(oo) (-1)^n * x^(n+8) converges for x in ]-1, 1[.

What about x = -1 or x = 1 ?

If x = -1 :
sum_(n=0)^(oo) (-1)^n * (-1)^(n+8) = sum_(n=0)^(oo) (-1)^(2n + 8) = sum_(n=0)^(oo) 1 = +oo

If x = 1 :
sum_(n=0)^(oo) (-1)^n * (1)^(n+8) = sum_(n=0)^(oo) (-1)^n is not defined.

So sum_(n=0)^(oo) (-1)^n * x^(n+8) converges for x in ]-1, 1[.