Question #bf8db
1 Answer
Feb 3, 2016
Explanation:
Consider the figure below
We know that
And
Then
#VE+3VE=VK# =>#VE=(VK)/4#
Since#VK=sqrt(2)*s# =>#VE=sqrt(2)/4*s#
Since
In
#EI^2=EF^2+FI^2=(sqrt(2)/4*s)^2+(sqrt(2)/2*s)^2=(2/16+2/4)s^2=(2+8)/16*s^2# =>#EI=sqrt(10)/4*s#
Still in
#(EI)/(sin 90^@)=(FI)/(sin F hat E I)# =>#sin F hat E I=(FI*1)/(EI)=(sqrt(2)/2*cancel(s))/(sqrt(10)/4*cancel(s))=2*sqrt(2/10)=2/sqrt(5)#
=>#F hat E I=sin^(-1) (2/sqrt(5))=63.435^@#