How do you factor 8a^3-278a327?

1 Answer
Feb 2, 2016

(2x-3)(2x^2+6x+9)(2x3)(2x2+6x+9)

Explanation:

1) Decide factoring method

In the equation both 88 and 2727 are cubes so we can use the Difference of Cubes method of factoring

2) Solve for variables

The formula for the Difference of Cubes method is:
a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

First we find aa:
a^3=8a^3a3=8a3
root(3)(a^3)=root(3)(8a^3)3a3=38a3
a=2aa=2a

Then we find bb:
b^3=27b3=27
root(3)(b^3)=root(3)(27)3b3=327
b=3b=3

3) Fill in formula

a^3-b^3=(a-b)(a^2+ab+b^2)a3b3=(ab)(a2+ab+b2)

(2x)^3-3^3=(2x-3)(2x^2+(2x*3)+3^2)(2x)333=(2x3)(2x2+(2x3)+32)

4) Simplify

(2x-3)(2x^2+6x+9)(2x3)(2x2+6x+9)