If AA and BB are vectors, then A.B = sum_(i=1)^3 x_(ai)y_(bi)A.B=3∑i=1xaiybi with a_i,b_i in {1,2,3}ai,bi∈{1,2,3}.
A.B = 2*3 + 6*(-1) + 5*(-3) = 6 - 6 - 15 = 15A.B=2⋅3+6⋅(−1)+5⋅(−3)=6−6−15=15.
||A|| = sqrt(x_a^2 + y_a^2 + z_a^2)||A||=√x2a+y2a+z2a, so ||A|| = sqrt(2^2 + 6^2 + (-3)^2) = sqrt49||A||=√22+62+(−3)2=√49 and ||B|| = sqrt(3^2 + (-1)^2 + 5^2) = sqrt(35)||B||=√32+(−1)2+52=√35
Hence A.B - ||A||*||B|| = 15 - sqrt(35*49) = 15 - sqrt(1715)A.B−||A||⋅||B||=15−√35⋅49=15−√1715