Remembering that:
#a^0=1#
#a^(-n)=1/a^n#
#a^n*a^m=a^(n+m)#
#a^n/a^m=a^(n-m)#
you can write the expression as:
#(1/s^2*1/t^7u^98)/(s^23*t^79*1/(u^77)*1*t^83*1/(u))=#
#(u^98*u^77*u)/(s^23*t^79*t^83*s^2*t^7)=#
ordering the therms
=#(u^98*u^77*u)/(s^23*s^2*t^79*t^83*t^7)=#
applying the rules
=#u^(98+77+1)/(s^(23+2)*t^(79+83+7))=#
#=u^176/(s^25*t^169)#
alternatively
#(s^-2*t^-7u^98)/(s^23*t^79*u^-77*s^0*t^83*u^-1=#
#(s^-2/(s^23*s^0))*(t^-7/(t^79*t^83))*(u^98/(u^(-77)*u^-1))=#
#s^(-2-23+0)*t^(-7-79-83)*u^(98+77+1)=#
#s^-25*t^-169*u^176=u^176/(s^25*t^169)#