How to integrate ?

enter image source here

1 Answer
Dec 23, 2015

intx^2/sqrt(4-x^2)dxx24x2dx

Let's x = 2sin(u)x=2sin(u)

u = arcsin(1/2x)u=arcsin(12x)

dx = 2cos(u)dudx=2cos(u)du

int4sin^2(u)/(2cos(u))*2cos(u)du4sin2(u)2cos(u)2cos(u)du (Just magical)

int 4sin^2(u)du4sin2(u)du

2int1-cos(2u)du21cos(2u)du

[2u-2sin(2u)]+C[2u2sin(2u)]+C

Substitute back

2[arcsin(1/2x)-sin(2arcsin(1/2x))]+C2[arcsin(12x)sin(2arcsin(12x))]+C

which is [2arcsin(x/2)-1/2 x sqrt(4-x^2)][2arcsin(x2)12x4x2]