intx^2/sqrt(4-x^2)dx∫x2√4−x2dx
Let's x = 2sin(u)x=2sin(u)
u = arcsin(1/2x)u=arcsin(12x)
dx = 2cos(u)dudx=2cos(u)du
int4sin^2(u)/(2cos(u))*2cos(u)du∫4sin2(u)2cos(u)⋅2cos(u)du (Just magical)
int 4sin^2(u)du∫4sin2(u)du
2int1-cos(2u)du2∫1−cos(2u)du
[2u-2sin(2u)]+C[2u−2sin(2u)]+C
Substitute back
2[arcsin(1/2x)-sin(2arcsin(1/2x))]+C2[arcsin(12x)−sin(2arcsin(12x))]+C
which is [2arcsin(x/2)-1/2 x sqrt(4-x^2)][2arcsin(x2)−12x√4−x2]