How do you solve the following linear system: # -x+3y=-9 , 5x-2y=-35 #?

1 Answer
Nov 15, 2015

#x= 29/4# I have shown in detail how to obtain the value of #x# but will let you solve for #y#. This can be done by substituting #29/4 " for "x#

Explanation:

Given:
#-x+3y=-9.........................................(1)#
#5x-2y=35..............................................(2)#

#color(red)("~~~~~~~~~~~~~~~~~~ All calculation shown ~~~~~~~~~~~~~~~")#

For equation (1): making #y# the dependant variable (y=..)

Add #color(blue)(x)# to both sides so that it is removed from the left.

#(3y-x) color(blue)(+x)=(-9)color(blue)(+x)#

#color(brown)("The brackets serve no purpose other than to show what")#
#color(brown)("is being altered or to group things so that they are obvious.")#

#3y=x-9#

Divide both sides by 3

#3/(color(blue)(3)) times y= x/(color(blue)(3)) -9/(color(blue)(3)) #

#color(green)(y= 1/3 x-3......................................(1_a))#

#color(red)("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")#

For equation (2): making #y# the dependant variable (y=..)

By sight!

#color(green)(y= 5/2x-35/2...................................................(2_a))#

#color(red)("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")#

Both equation #(1_a)# and #(2_a)# have a common value in y so
adopting #"Equation "(1_a) =y = "Equation "(2_a)# to solve for #x#

#color(blue)(1/2x -3 )color(brown)(= y =) color(blue)(5/2x-35/2)#

Giving:

#color(blue)(1/2x -3 )color(brown)(=)color(blue)(5/2x-35/2)#

Collecting like terms:

#5/2x -1/2x =35/2-3#

#2x=29/2#

Divide both sides by 2 giving

#(2x) divide 2 =(29/2) divide 2#

#2/2x = 29/2 times 1/2#

#color(green)(x= 29/4............................................(3))#

#color(red)("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")#

Now substitute for #x# using equation (3) into either equation #(1_a) " or " (2_a)# to determine the value of y.

I will let you do that!