How do you simplify #sqrt 10(4+sqrt 5)#? Algebra Radicals and Geometry Connections Multiplication and Division of Radicals 1 Answer Farzana H. Sep 29, 2015 #4sqrt(10)+5sqrt(2)# Explanation: #sqrt(10)*(4+sqrt(5))# #=4*sqrt(10)+sqrt(5)*sqrt(10)# #=4*sqrt(10)+sqrt(5*10)# #=4*sqrt(10)+sqrt(5*5*2)# #=4*sqrt(10)+sqrt(5^2*2)# #=4sqrt(10)+5sqrt(2)# Answer link Related questions How do you simplify #\frac{2}{\sqrt{3}}#? How do you multiply and divide radicals? How do you rationalize the denominator? What is Multiplication and Division of Radicals? How do you simplify #7/(""^3sqrt(5)#? How do you multiply #(sqrt(a) +sqrt(b))(sqrt(a)-sqrt(b))#? How do you rationalize the denominator for #\frac{2x}{\sqrt{5}x}#? Do you always have to rationalize the denominator? How do you simplify #sqrt(5)sqrt(15)#? How do you simplify #(7sqrt(13) + 2sqrt(6))(2sqrt(3)+3sqrt(6))#? See all questions in Multiplication and Division of Radicals Impact of this question 3689 views around the world You can reuse this answer Creative Commons License