Question #191f2

1 Answer
Sep 11, 2015

cos 75 =1/2 sqrt((2+sqrt(3))/4) - sqrt(3)/2 sqrt((2-sqrt(3))/4)cos75=122+3432234

Explanation:

You need to find a way to express the angle 7575 degrees in terms of the standard angles.

The standard angles are (in degrees):

3030 degrees
4545 degrees
6060 degrees
9090 degrees

You need to come up with an expression that equals 7575, using only addition and dividing by 2.

One possible combination is:

60 + 30/2 = 7560+302=75

Therefore, we can solve this by hand by using:

cos 75cos75
= cos(60+30/2)=cos(60+302)

First we can use the sum and difference identities:

color(green)(cos (alpha + beta) = cos alpha cos beta - sin alpha sin beta)cos(α+β)=cosαcosβsinαsinβ

cos(60+30/2)cos(60+302)

= cos 60 cos (30/2) - sin 60 sin (30/2)=cos60cos(302)sin60sin(302)

Then we can use the half angle identities:

color(green)(sin (theta/2) = sqrt((1-cos theta)/2))sin(θ2)=1cosθ2

color(green)(cos(theta/2) = sqrt((1+cos theta)/2))cos(θ2)=1+cosθ2

cos 60 cos (30/2) - sin 60 sin (30/2)cos60cos(302)sin60sin(302)
= cos 60 sqrt((1+cos30)/2) - sin 60 sqrt((1-cos30)/2)=cos601+cos302sin601cos302

Now we can evaluate the expression by hand:

color(green)(cos 60 = 1/2)cos60=12

color(green)(sin 60 = sqrt(3)/2)sin60=32

color(green)(cos 30 = sqrt(3)/2)cos30=32

cos 60 sqrt((1+cos30)/2) - sin 60 sqrt((1-cos30)/2)cos601+cos302sin601cos302

=(1/2) sqrt((1+sqrt(3)/2)/2) - (sqrt(3)/2) sqrt((1-sqrt(3)/2)/2)=(12)1+322(32)1322

= (1/2) sqrt(((2+sqrt(3))/2)/2) - (sqrt(3)/2) sqrt(((2-sqrt(3))/2)/2)=(12)2+322(32)2322

=(1/2) sqrt((2+sqrt(3))/4) - (sqrt(3)/2) sqrt((2-sqrt(3))/4)=(12)2+34(32)234

color(blue)(=1/2 sqrt((2+sqrt(3))/4) - sqrt(3)/2 sqrt((2-sqrt(3))/4))=122+3432234