You need to find a way to express the angle 7575 degrees in terms of the standard angles.
The standard angles are (in degrees):
3030 degrees
4545 degrees
6060 degrees
9090 degrees
You need to come up with an expression that equals 7575, using only addition and dividing by 2.
One possible combination is:
60 + 30/2 = 7560+302=75
Therefore, we can solve this by hand by using:
cos 75cos75
= cos(60+30/2)=cos(60+302)
First we can use the sum and difference identities:
color(green)(cos (alpha + beta) = cos alpha cos beta - sin alpha sin beta)cos(α+β)=cosαcosβ−sinαsinβ
cos(60+30/2)cos(60+302)
= cos 60 cos (30/2) - sin 60 sin (30/2)=cos60cos(302)−sin60sin(302)
Then we can use the half angle identities:
color(green)(sin (theta/2) = sqrt((1-cos theta)/2))sin(θ2)=√1−cosθ2
color(green)(cos(theta/2) = sqrt((1+cos theta)/2))cos(θ2)=√1+cosθ2
cos 60 cos (30/2) - sin 60 sin (30/2)cos60cos(302)−sin60sin(302)
= cos 60 sqrt((1+cos30)/2) - sin 60 sqrt((1-cos30)/2)=cos60√1+cos302−sin60√1−cos302
Now we can evaluate the expression by hand:
color(green)(cos 60 = 1/2)cos60=12
color(green)(sin 60 = sqrt(3)/2)sin60=√32
color(green)(cos 30 = sqrt(3)/2)cos30=√32
cos 60 sqrt((1+cos30)/2) - sin 60 sqrt((1-cos30)/2)cos60√1+cos302−sin60√1−cos302
=(1/2) sqrt((1+sqrt(3)/2)/2) - (sqrt(3)/2) sqrt((1-sqrt(3)/2)/2)=(12)√1+√322−(√32)√1−√322
= (1/2) sqrt(((2+sqrt(3))/2)/2) - (sqrt(3)/2) sqrt(((2-sqrt(3))/2)/2)=(12)√2+√322−(√32)√2−√322
=(1/2) sqrt((2+sqrt(3))/4) - (sqrt(3)/2) sqrt((2-sqrt(3))/4)=(12)√2+√34−(√32)√2−√34
color(blue)(=1/2 sqrt((2+sqrt(3))/4) - sqrt(3)/2 sqrt((2-sqrt(3))/4))=12√2+√34−√32√2−√34