Question #5a793

1 Answer
Jun 25, 2015

It is proved by finding a & b and also using De Moivre's theorem.

Explanation:

Determination of "a":

#a+1/a=2cosalpha##" "color(blue)((1))#

squaring on both sides

#(a+1/a)^2=(2cosalpha)^2#

#(a+1/a)^2=4cos^2alpha#

#(a-1/a)^2=(a+1/a)^2-(4*1/a*a)#

[since#(a-b)^2=(a+b)^2-4ab]#

#=>(a-1/a)^2=4cos^2alpha-4#

#=>(a-1/a)^2=-4(1-cos^2alpha)#

#=>(a-1/a)=sqrt(-4)sqrt(1-cos^2alpha#

#=>(a-1/a)=i2sinalpha##" "color(blue)((2))#

Add #" "color(blue)((1))#&#color(blue)((2))#

#a+1/a+a-1/a=2cosalpha+i2sinalpha#

#a=cosalpha+isinalpha=e^(ialpha)##" "color(blue)((3))#

(since#costheta+isin(theta)=e^(itheta)#)

Determination of "b":

Similarly

#b=cosbeta+isinbeta=e^(ibeta)##" "color(blue)((4))#

#a^pb^q+1/(a^pb^q)=e^(ipalpha)*e^(iqbeta)+1/(e^(ipalpha)*e^(iqbeta))#

#a^pb^q+1/(a^pb^q)=e^(ipalpha+iqbeta)+1/(e^(ipalpha+iqbeta)#

#a^pb^q+1/(a^pb^q)=e^(ipalpha+iqbeta)+(e^-(ipalpha+iqbeta))#

since #e^(itheta)+e^(-itheta)=2costheta#

#a^pb^q+1/(a^pb^q)=2cos(palpha+qbeta)#

Hence proved