Given: f(x) = 2+ sqrt(-3x+1)f(x)=2+3x+1, q(x) = (5x)/(x+2)q(x)=5xx+2, and m(x) = abs(7 - x^2) + xm(x)=7x2+x, how do you find f(-33)?

1 Answer
Jun 10, 2015

You can simply substitute x with -33 in f(x) function:
f(-33)=12f(33)=12.

Explanation:

f(x)=2+sqrt(−3x+1)f(x)=2+3x+1

q(x)=(5x)/(x+2)q(x)=5xx+2
m(x)=∣7−x^2∣+xm(x)=7x2+x

How do you find f(-33)?
f(-33)=2+sqrt(-3*-33+1)=2+sqrt(100)=2+10=12f(33)=2+333+1=2+100=2+10=12