How do you solve 5 /(x^2 + 4x) = 3 / x - 2/(x + 4)?

1 Answer
Jun 2, 2015

We have : 5/(x^2 + 4x) = 3/x - 2/(x + 4).

Let's write all the fractions with the same denominator :

5/(x^2 + 4x) = 3/x - 2/(x + 4)

5/(x^2 + 4x) = (3*(x+4))/(x*(x+4)) - (2*x)/((x + 4)*x)

5/(x^2 + 4x) = (3*(x+4))/(x^2+4x) - (2*x)/(x^2+4x)

Now, let's put all the fractions on the left :

5/(x^2 + 4x) = (3x+12)/(x^2+4x) - (2x)/(x^2+4x)

5/(x^2 + 4x) - (3x+12)/(x^2+4x) + (2x)/(x^2+4x) = 0

(5-(3x+12)+ (2x))/(x^2+4x) = 0

(5-3x-12+2x)/(x^2+4x) = 0

(-x-7)/(x^2+4x) = 0

-(x+7)/(x^2+4x) = 0

We can multiply all the equation by -(x^2+4x) :

x+7 = 0

That equation = 0 when x+7 = 0 => x=-7.