We have :
(x^(2n+1) - y^(2n+1))/(x-y) =lambda, where lambda in ZZ
=> (x^(2n+1) - y^(2n+1))=lambda(x-y)
Basis :
With n=0, (x-y)=1(x-y)=lambda(x-y)
With n=1, (x^3-y^3)=(x-y)(x^2+xy+y^2)=lambda(x-y)
Inductive step :
Let's assume (x^(2n+1) - y^(2n+1))=lambda(x-y) is true for n in NN.
Let's demonstrate that it is true for n+1 in NN :
x^(2(n+1)+1) - y^(2(n+1)+1)=x^(2n+3) - y^(2n+3)
x^(2n+3) - y^(2n+3) = x^(2n+3) + x^(2n+1)y^2-x^(2n+1)y^2 - y^(2n+3)
= x^(2n+1)(x^2-y^2) + y^2(x^(2n+1)-y^(2n+1))
= x^(2n+1)(x+y)(x-y) + y^2lambda(x-y)
= (x-y)(x^(2n+1)(x+y) + lambday^2)
= lambda_2(x-y), where lambda_2=(x^(2n+1)(x+y) + lambday^2) in ZZ.
QED.