We have :
#(x^(2n+1) - y^(2n+1))/(x-y) =lambda#, where #lambda in ZZ#
#=> (x^(2n+1) - y^(2n+1))=lambda(x-y) #
Basis :
With #n=0#, #(x-y)=1(x-y)=lambda(x-y)#
With #n=1#, #(x^3-y^3)=(x-y)(x^2+xy+y^2)=lambda(x-y)#
Inductive step :
Let's assume #(x^(2n+1) - y^(2n+1))=lambda(x-y)# is true for #n in NN#.
Let's demonstrate that it is true for #n+1 in NN# :
#x^(2(n+1)+1) - y^(2(n+1)+1)=x^(2n+3) - y^(2n+3)#
#x^(2n+3) - y^(2n+3) = x^(2n+3) + x^(2n+1)y^2-x^(2n+1)y^2 - y^(2n+3)#
#= x^(2n+1)(x^2-y^2) + y^2(x^(2n+1)-y^(2n+1))#
#= x^(2n+1)(x+y)(x-y) + y^2lambda(x-y)#
#= (x-y)(x^(2n+1)(x+y) + lambday^2)#
#= lambda_2(x-y)#, where #lambda_2=(x^(2n+1)(x+y) + lambday^2) in ZZ#.
QED.