How do you find the derivative of f(x) = 2x^3 e^(9x)f(x)=2x3e9x?

1 Answer
May 17, 2015

The answer is : f'(x) = 6e^(9x)x^2(1+3x)

f(x) = 2x^3e^(9x) = h(x)g(x), where h(x) = 2x^3 and g(x) = e^(9x).

We will find the derivative with the product rule :

f'(x) = h'(x)g(x) + h(x)g'(x) = (2x^3)'e^(9x)+2x^3(e^(9x))'

f'(x) = 2*3x^2*e^(9x) + 2x^3*9e^(9x) = 6x^2e^(9x) +18x^3e^(9x)

f'(x) = 6e^(9x)(x^2 + 3x^3) = 6e^(9x)x^2(1+3x)