How do you multiply #(2x+5)^3#? Algebra Polynomials and Factoring Multiplication of Polynomials by Binomials 1 Answer Joe D. Apr 7, 2015 If there is #(a+b)(c+d)# then: #(a+b)(c+d) = a*c + a*d + b*c +b*d# #(2x+5)^3 = (2x+5) * (2x+5) * (2x+5)# #= [4x^2 + 10x + 10x +25] * (2x+5)# If there is #(a+b+c)(d+e)# then: #(a+b+c)(d+e) = ad+ae+bd+be+cd+ce# #= (4x^2 + 20x + 25) * (2x+5)# #=8x^3 + 20x^2 + 40x^2 + 100x + 50x + 125# The answer is: #=8x^3 + 60x^2 + 150x + 15# Answer link Related questions What is FOIL? How do you use the distributive property when you multiply polynomials? How do you multiply #(x-2)(x+3)#? How do you simplify #(-4xy)(2x^4 yz^3 -y^4 z^9)#? How do you multiply #(3m+1)(m-4)(m+5)#? How do you find the volume of a prism if the width is x, height is #2x-1# and the length if #3x+4#? How do you multiply #(a^2+2)(3a^2-4)#? How do you simplify #(x – 8)(x + 5)#? How do you simplify #(p-1)^2#? How do you simplify #(3x+2y)^2#? See all questions in Multiplication of Polynomials by Binomials Impact of this question 8695 views around the world You can reuse this answer Creative Commons License